黑龍江省與俄羅斯5個(gè)州區(qū)接壤,邊境線(xiàn)長(zhǎng)多少公里?共有國(guó)家一類(lèi)口岸多少個(gè)?其中邊境口岸多少個(gè)? - 常識(shí)判斷
黑龍江省與俄羅斯5個(gè)州區(qū)接壤,邊境線(xiàn)長(zhǎng)多少公里?共有國(guó)家一類(lèi)口岸多少個(gè)?其中邊境口岸多少個(gè)?減小字體增大字體黑龍江省與俄羅斯5個(gè)州區(qū)接壤,邊境線(xiàn)長(zhǎng)多少公里?共有國(guó)家一類(lèi)口岸多少個(gè)?其中邊境口岸多少個(gè)?
答:2981公里。25個(gè)。15個(gè)。
用戶(hù)名:!查看更多評(píng)論
分值:100分55分1分
內(nèi)容:!
通知管理員驗(yàn)證碼:點(diǎn)擊獲取驗(yàn)證碼
2015軍隊(duì)文職招聘考試崗位能力數(shù)量關(guān)系:不定方程求解
在軍隊(duì)文職招聘考試崗位能力考試中,數(shù)量關(guān)系一直是廣大考生的難點(diǎn),很多考生一看到數(shù)量關(guān)系就頭痛,不想做或者做不出來(lái)。出現(xiàn)這種情況的原因主要是大家對(duì)于數(shù)量關(guān)系不熟練。其實(shí)數(shù)量關(guān)系考察的都是中小學(xué)的知識(shí)點(diǎn),但是出題的方式、角度和中小學(xué)很不一樣,大家不適應(yīng)這種方式,所以就覺(jué)得數(shù)量關(guān)系很難。但是如果大家掌握了這種出題的方式,就很容易在數(shù)量關(guān)系上拿分。下面紅師教育網(wǎng)就為大家介紹一種數(shù)量關(guān)系的解題方法不定方程。 所謂不定方程,是指未知數(shù)的個(gè)數(shù)多于方程個(gè)數(shù),且未知數(shù)受到某些限制的方程或方程組?;谶@樣一個(gè)特點(diǎn),如何在方程個(gè)數(shù)不夠時(shí),快速定位出最終答案,就成為了解題的關(guān)鍵環(huán)節(jié)。其實(shí)數(shù)學(xué)運(yùn)算當(dāng)中有一個(gè)潛在的條件,這就是未知數(shù)一定是整數(shù),且絕大部分是正整數(shù)。
下面紅師教育網(wǎng)針對(duì)不定方程的解題方法以及它們對(duì)應(yīng)的應(yīng)用環(huán)境進(jìn)行詳解。 解法1:代入排除法(選項(xiàng)給出每個(gè)未知數(shù)的具體量) 例1:已知有1分、2分和5分的硬幣共100枚,如果其中2分硬幣的價(jià)值比1分硬幣的價(jià)值多13分,那么三種硬幣分別多少枚?() 、32、、20、、40、、28、18 解析:設(shè)3種的硬幣個(gè)數(shù)分別為x,y,z。根據(jù)題意列出方程:2y-x=13。通過(guò)觀察發(fā)現(xiàn)本題的選項(xiàng)比較全面,給出了每個(gè)未知數(shù)的具體值。因此考慮使用代入排除,這道題,我們直接可以排除B、D,因?yàn)锽、D選項(xiàng)x、y都為偶數(shù),兩個(gè)偶數(shù)相減不可能為13奇數(shù)。再帶入A、D。發(fā)現(xiàn)D不符合題意,因此本題答案選擇A選項(xiàng)。 解法2:尾數(shù)法(未知數(shù)系數(shù)為5或0結(jié)尾) 例2:超市將99個(gè)蘋(píng)果裝進(jìn)兩種包裝盒,大包裝盒每個(gè)裝12個(gè)蘋(píng)果,小包裝盒每個(gè)裝5個(gè)蘋(píng)果,共用了十多個(gè)盒子剛好裝完。
() 解析:設(shè)大盒x個(gè),小盒y個(gè)。列出方程,12x+5y=99。一個(gè)方程,兩個(gè)未知數(shù)。屬于不定方程問(wèn)題,觀察y的系數(shù)為5,那么5y的尾數(shù)很好判斷,一定為0或5。由于等號(hào)右邊的99尾數(shù)為9,因此12x尾數(shù)對(duì)應(yīng)的為9或4。但是12x尾數(shù)不可能為9,所以能確定12x尾數(shù)為4。x取值只能為2或者7。當(dāng)x=2時(shí),y=15,共用了17個(gè)盒子,兩者差了13個(gè),符合題意;當(dāng)x=7時(shí),y=3共用了10個(gè)盒子,不滿(mǎn)足共用十多個(gè)盒子,排除。因此,本題答案選擇D選項(xiàng)。 解法3:奇偶性(未知數(shù)系數(shù)為偶數(shù)居多或提到未知數(shù)為質(zhì)數(shù)) 例3:某兒童藝術(shù)培訓(xùn)中心有5名鋼琴教師和6名拉丁舞教師,培訓(xùn)中心將所有的鋼琴學(xué)員和拉丁舞學(xué)員共76人分別平均地分給各個(gè)老師帶領(lǐng),剛好能夠分完,且每位老師所帶的學(xué)生數(shù)量都是質(zhì)數(shù)。
() 解析:設(shè)每位鋼琴老師帶x人,拉丁舞老師帶y人。列出方程5x+6y=76。一個(gè)方程兩個(gè)未知數(shù),屬于不定方程為題,且x,y為質(zhì)數(shù)。76是偶數(shù),6y也是偶數(shù),因此5x必須也為偶數(shù),即x為偶數(shù)。且x為質(zhì)數(shù)。既是質(zhì)數(shù)又是偶數(shù)的只有數(shù)字2。解出x=2;y=11。當(dāng)老師數(shù)量變?yōu)?名鋼琴老師和3名拉丁舞老師后。還剩學(xué)員42+311=41(人)。因此,答案選擇D選項(xiàng)。 解法4:特值法(給出條件求表達(dá)式的值) 例4:甲、乙、丙三種貨物,如果購(gòu)買(mǎi)甲3件、乙7件、丙1件需花元,如果購(gòu)買(mǎi)甲4件、乙10件、丙1件需花元,那么購(gòu)買(mǎi)甲、乙、丙各1件需花多少錢(qián)?() 元元元元 解析:設(shè)購(gòu)買(mǎi)甲、乙、丙三種貨物各x、y、z件。
求的是x+y+z=?。屬于給出條件求表達(dá)式的值。給出的條件是關(guān)于x、y、z的方程組。馬上考慮使用特值法。只要特值滿(mǎn)足該方程組即可。因此我們?cè)O(shè)y=0。此時(shí)x=,z=(元)。故而此題選A選項(xiàng)。 紅師教育網(wǎng)提醒考生,掌握這類(lèi)題型就基本上打通了數(shù)學(xué)運(yùn)算的任督二脈,距離崗位能力高分也就不遠(yuǎn)了。