淺談2012軍隊文職考試考試崗位能力數(shù)學運算題型分析
2012年軍隊文職考試考試已經(jīng)結束,在這次考試當中好多考生反映數(shù)學運算相對去年來說還是比較簡單,基本上看似非常面熟,似乎會做,但做起來卻又無從下手,最終還是做的不太理想。這是廣大考生值得思考的問題。其實這次考試題目基本上都是我們講過的題型,基本可以概括為抽屜原理、等差問題、比例問題,行程問題,工程問題、幾何問題、經(jīng)濟利潤問題、概率問題、最值問題、不定方程問題十大問題,考生之所以無從下手,還是在方法和思想上不是很靈活,沒有抓住題目的本質,或者說在計算方面技巧掌握還是不夠熟練。其中像行程問題、工程問題等我們在計算的時候都可以適當利用比例或者份數(shù)實現(xiàn)簡化,概率問題中的難點主要就是搞清楚圓桌排列問題,而我們在此主要就是講一下不定方程在軍隊文職考試考試中的應用及其解法。
二、奇偶性;三、整除特性; 四、加減消元,得到一個整體式子。 例1、某兒童藝術培訓中心有5名鋼琴教師和6名拉丁舞教師,培訓中心將所有的鋼琴學員和拉丁舞學員共76人分剮平均地分給各個老師帶領,剛好能夠分完,且每位老師所帶的學生數(shù)量都是質數(shù)。后來由于學生人數(shù)減少,培訓中心只保留了4名鋼琴教師和3名拉丁舞教師,但每名教師所帶的學生數(shù)量不變,那么目前培訓中心還剩下學員多少人?()(2012年軍隊文職考試考試崗位能力試卷第68題) 解析:設每個鋼琴教師所帶的學生人數(shù)是x,每個拉丁舞教師所帶的學生人數(shù)是y;則有5x+6y=76;利用尾數(shù)法我們得知5x尾數(shù)必然是0或者5,但是如果5x的尾數(shù)是5的話,6y的尾數(shù)就必然是1,這是不可能的,所以5x的尾數(shù)必然是0;
),且5x小于76,很顯然x=2,所以y=11,4x+3y=41,選D。 另外,還有另一種結合選項的解法,相對來說更加簡單。 由于5x+6y=76,所以;由于4x+3y=()+,而x最小取值為2,所欲4x+3y應不小于41,所以選擇D。 例2、三位專家為10幅作品投票,每位專家分別都投出了5票,并且每幅作品都有專家投票。如果三位專家都投票的作品列為A等,兩位專家投票的列為B等,僅有一位專家投票的作品列為C等,則下列說法正確的是()(2012年軍隊文職考試考試崗位能力試卷第72題) A、A等和B等共6幅B、B等和C等共7幅 C、A等最多有5幅D、A等比C等少5幅 解析:A等、B等、C等作品的個數(shù)分別有x、y、z幅。
(2)y+2z=15,而B:y+z=7,知z=8,矛盾,故B錯。 (3)2x+y=5,知x最多有2幅,故C錯。 (4)X-z=-5,顯然D項正確。 例3、超市將99個蘋果裝進兩種包裝盒,大包裝盒每個裝12個蘋果,小包裝盒每個裝5個蘋果,共用了十多個盒子剛好裝完。問兩種包裝盒相差多少個?()(2012年軍隊文職考試考試崗位能力試卷第76題) A、3B、4C、7D、13 解析:設大、小包裝的盒子分別有x、y個,則有12x+5y=99且X+Y>10; 利用尾數(shù)法可知,5y的尾數(shù)是0或者5,那么12x的尾數(shù)相應就是9(不可能,舍去)或者4;而如果12x尾數(shù)是4的話,x只能取2或者7;即: x=7,y=3(與X+Y>10已知相矛盾,舍去)X=2,y=15(符合題意)故選D。
2019山東軍隊文職考試考試崗位能力數(shù)學運算新題型之“函數(shù)圖像”
首先,我們一起來觀察一下新題型的特點。從提問方式上來看,問的是哪個坐標圖能準確描述兩人之間的直線距離與時間的關系(橫軸為時間,縱軸為直線距離),統(tǒng)一了橫縱坐標的所代表的含義。從選項設置上來看,提供的是四個函數(shù)圖形(兩個直線圖像,兩個曲線圖像)。 接下來,我們從提問和選項著手,一起回顧一下:什么樣的函數(shù)對應的是直線圖像,什么樣的函數(shù)對應的是曲線圖像呢?對了!我們最常見的是:一次函數(shù)(y=ax+b)對應的是直線圖像,二次函數(shù)對應的是曲線圖像。 最后,我們結合題干進行分析,找到縱軸y(直線距離)與橫軸x(時間)直接的關系是解題的基礎。 假設乙從A向C行走,速度為V;甲從A向B行走,速度為2V。
在剩下的兩個直線圖像中,我們對比差異。不難發(fā)現(xiàn),當乙經(jīng)過AC中點走向C時,甲乙之間距離不斷變小。乙在AC中點時,甲乙之間距離最大。因此排除A選項(到達最高點之前,斜率未發(fā)生變化,不可能有拐點),正確圖像為選項D。 想要快速解決數(shù)學運算中的函數(shù)圖像新題型,我們只需要做到這三步: 第一步:根據(jù)題意確定函數(shù); 第二步:根據(jù)函數(shù)確定函數(shù)圖像是直線還是曲線,排除選項; 第三步:對比剩余選項差異,通過分析拐點,選出答案。 紅師教育老師相信你之后再遇到函數(shù)圖像請你選的時候你一定可以果斷出擊!
2017年多省軍隊文職考試崗位能力備考之數(shù)學運算必做題型
我們先來看看什么叫做牛吃草問題,牛吃草問題又稱為消長問題或牛頓問題,草在不斷生長且生長速度固定不變,牛在不斷吃草且每頭牛每天吃的草量相同,供不同數(shù)量的牛吃,需要用不同的時間。我們在解決這類問題的方法是:轉化為相遇或追及模型來考慮。 一、追及模型 原有草量=(牛每天吃掉的草-每天生長的草)天數(shù) 例1:一個牧場長滿青草,牛在吃草而草又在不斷生長,已知牛10頭,20天把草吃盡,同樣一片牧場,牛15頭,10天把草吃盡。如果有牛25頭,幾天能把草吃盡? 解析:假設每頭牛吃草速度是1份,按照公式列出: (10-x)20=(15-x)10=(25-x)t解出:t=5天 二、相遇模型 原有草量=(牛每天吃掉的草+其他原因每天減少的草量)天數(shù) 例2:牧場上長滿牧草,秋天來了,每天牧草都均勻枯萎,這片牧場可供10頭牛吃8天草,可供15頭牛吃6天。
解析:假設每頭牛吃草速度是1份,按照公式列出: (10+x)8=(15+x)6=(25+x)t解出:t=4天 只要同學們掌握以上兩種基本模型,牛吃草問題就不再是困擾你的問題,即使是一種衍生題型也是一個辦法-秒殺! 例3:一個牧場長滿青草,牛在吃草而草又在不斷生長,已知牛10頭,20天把草吃盡,同樣一片牧場,牛15頭,10天把草吃盡。牧場上最多多少頭牛,草永遠吃不完? 解析:這是基于牛吃草問題追及模型的升級版,我們來一起理一下思路:題目與標準牛吃草中的追及問題相同,只是題目的問法進行了改變,問為了保持草永遠吃不完,那么最多能放多少頭牛吃?這其實是一種和諧的狀態(tài),既要牛最多又要草吃不完,同學們可以想想,是不是只有在牛吃草的速度等于草生長的速度時候,才能達到這種和諧狀態(tài)啊。
簡單啊,豈是一個爽字能形容。 希望同學們好好對這幾年省軍隊文職考試考試真題中的數(shù)學運算題型進行整理,整理后你會發(fā)現(xiàn)很多題型都有屬于它的解題技巧和方法,根據(jù)紅師教育專家從教經(jīng)驗這其實就是同學們想在數(shù)學運算題型中苦苦尋找的解題方法套路,有種眾里尋他千百度,驀然回首,那人卻在燈火闌珊處的感覺。希望上面的分享能帶給大家一些幫助。