解放軍文職招聘考試埃及人對(duì)數(shù)學(xué)的應(yīng)用及對(duì)數(shù)學(xué)發(fā)展的貢獻(xiàn)-解放軍文職人員招聘-軍隊(duì)文職考試-紅師教育
發(fā)布時(shí)間:2017-11-2218:54:56埃及人對(duì)數(shù)學(xué)的應(yīng)用及對(duì)數(shù)學(xué)發(fā)展的貢獻(xiàn)一、埃及人對(duì)數(shù)學(xué)的應(yīng)用埃及的數(shù)學(xué)是從生產(chǎn)和生活實(shí)際中產(chǎn)生的,反過(guò)來(lái),他們又力爭(zhēng)把所獲得的數(shù)學(xué)知識(shí)應(yīng)用于實(shí)踐.埃及人把數(shù)學(xué)知識(shí)應(yīng)用到管理國(guó)家和教會(huì)的事物中,譬如,確定付給勞役者的報(bào)酬,求谷倉(cāng)的容積和田地的面積,征收按土地面積估出的地稅,計(jì)算修造房屋和防御工程所需的磚數(shù).把數(shù)學(xué)應(yīng)用于釀酒等方面的計(jì)算.他們利用術(shù)語(yǔ)比數(shù)(pesu),即一個(gè)單位谷物生產(chǎn)出酒的量或面包的個(gè)數(shù),按下面方法計(jì)算:谷物的量比數(shù)=酒量(或面包的個(gè)數(shù)).在這些簡(jiǎn)單的計(jì)算中,常常需要進(jìn)行單位的換算.把數(shù)學(xué)應(yīng)用到天文的計(jì)算中.從第一朝代開(kāi)始,尼羅河就是埃及人的生命源泉,他們?nèi)粘龆?,日落而息,必須掌握四季氣候變遷的規(guī)律,力求準(zhǔn)確預(yù)報(bào)洪水到來(lái)的日期,進(jìn)行大量的計(jì)算.他們還把幾何知識(shí)與天文知識(shí)結(jié)合起來(lái),用于建造神廟,使一年里某些天的陽(yáng)光能以特定方式照射到廟宇里.金字塔的方位也朝向天上特定的方向,而斯芬克斯(即獅面人身像)的面則是朝東的.金字塔代表了埃及人對(duì)幾何的另一種用法,竭力使金字塔的底為有規(guī)則的形狀,底和高的尺寸之比也是有特殊意義的.二、埃及人對(duì)數(shù)學(xué)發(fā)展的貢獻(xiàn)當(dāng)我們回顧埃及數(shù)學(xué)的產(chǎn)生與發(fā)展時(shí),不難看出,埃及人推動(dòng)了數(shù)學(xué)的產(chǎn)生和應(yīng)用.其中,對(duì)數(shù)學(xué)發(fā)展產(chǎn)生很大影響的希臘數(shù)學(xué),也曾借鑒過(guò)埃及數(shù)學(xué).譬如,希臘人曾學(xué)習(xí)過(guò)埃及那種特定方式乘法和單位分?jǐn)?shù)的計(jì)算,然后又發(fā)展了這種計(jì)算方法.另外,關(guān)于確定圖形面積和體積的規(guī)則,可能希臘人也是從埃及人那里學(xué)來(lái)的,但是,對(duì)于這些規(guī)則的證明,是由希臘人完成的.埃及人沒(méi)有把零散的數(shù)學(xué)知識(shí)系統(tǒng)化,使之成為一門(mén)獨(dú)立學(xué)科,只是做為一種工具,把形式上沒(méi)有聯(lián)系的簡(jiǎn)單法則,用于解決人們?cè)谌粘I钪兴龅降膯?wèn)題.埃及人對(duì)數(shù)學(xué)的主要貢獻(xiàn),我們做簡(jiǎn)略地歸納:(1)基本完成了特定方式的四則運(yùn)算,并且把它們推廣到分?jǐn)?shù)上,已經(jīng)有了求近似平方根的方法.(2)他們能夠用算術(shù)方法處理一次方程和某些類(lèi)型的二次方程問(wèn)題.(3)他們已經(jīng)有了算術(shù)級(jí)數(shù)和幾何級(jí)數(shù)的知識(shí).(4)在幾何方面,得到了某些平面圖形和立體圖形的求積方法.(5)得到較好的圓周率值(在那個(gè)時(shí)期),正確認(rèn)識(shí)了把圓分為若干相等部分的問(wèn)題.(6)他們已經(jīng)熟悉了比例的基本原理,某些數(shù)學(xué)史家還認(rèn)為埃及數(shù)學(xué)有三角函數(shù)的萌芽.
解放軍文職招聘考試現(xiàn)代數(shù)學(xué)概觀——二十世紀(jì)的數(shù)學(xué)-解放軍文職人員招聘-軍隊(duì)文職考試-紅師教育
發(fā)布時(shí)間:2017-11-2220:13:57現(xiàn)代數(shù)學(xué)概觀二十世紀(jì)的數(shù)學(xué)19世紀(jì)末到20世紀(jì)初,數(shù)學(xué)也像物理學(xué)一樣,迎來(lái)了一個(gè)激烈的變革時(shí)期.一方面人們開(kāi)始接受康托爾的集合論作為統(tǒng)一數(shù)學(xué)的基礎(chǔ),但不久又在其中發(fā)現(xiàn)有悖論,從而出現(xiàn)了嚴(yán)重的數(shù)學(xué)危機(jī).另一方面,作為未來(lái)數(shù)學(xué)的主要方法公理化方法由希爾伯特所奠定,他在1899年發(fā)表的《幾何學(xué)基礎(chǔ)》(GrundlagenderGeometrie)對(duì)于二十世紀(jì)的數(shù)學(xué)給予很大的啟示.在他的推動(dòng)下,形成了一個(gè)小小的公理化熱潮.1900年,希爾伯特在第二屆國(guó)際數(shù)學(xué)家大會(huì)上提出著名的23個(gè)問(wèn)題,其重點(diǎn)是數(shù)學(xué)基礎(chǔ)及公理化問(wèn)題,但其他大部分問(wèn)題,是繼承19世紀(jì)的數(shù)學(xué)傳統(tǒng),雖有繼往開(kāi)來(lái)的作用,但與20世紀(jì)數(shù)學(xué)的主要發(fā)展路線關(guān)系不太密切.20世紀(jì)初,數(shù)學(xué)越來(lái)越趨于抽象化,抽象群論的研究、法國(guó)數(shù)學(xué)家勒貝格(H.Lebesgue,18751941)的測(cè)度論和積分論、希爾伯特的積分方程理論、法國(guó)數(shù)學(xué)家弗瑞歇(M.Frchet,18781973)的抽象空間理論、代數(shù)學(xué)的一些公理化理論相繼出現(xiàn),連同組合拓?fù)鋵W(xué)的建立,預(yù)示著以代數(shù)學(xué)和拓?fù)鋵W(xué)為中心的現(xiàn)代數(shù)學(xué)翻天覆地的變化.泛函分析的出現(xiàn)大大改變了分析的面貌,而且給量子物理學(xué)準(zhǔn)備了現(xiàn)成的工具.與以前的數(shù)學(xué)比較,20世紀(jì)數(shù)學(xué)有如下特點(diǎn):1.?dāng)?shù)學(xué)不再只是數(shù)論、代數(shù)、幾何、分析幾個(gè)相對(duì)獨(dú)立的部分,而是隨著集合論的出現(xiàn)涌現(xiàn)出大量的新學(xué)科、新分支、新理論.例如:數(shù)學(xué)基礎(chǔ)與數(shù)理邏輯(以及分化出來(lái)模型論、遞歸論、證明論),抽象代數(shù)學(xué)(包括群論、環(huán)論、域論、同調(diào)代數(shù)學(xué)、代數(shù)K理論、格論以及各式各樣的代數(shù)結(jié)構(gòu)),一般拓?fù)鋵W(xué)、代數(shù)拓?fù)鋵W(xué)、微分拓樸學(xué)、拓?fù)淙豪碚?及其他拓?fù)浯鷶?shù),包括李群)、代數(shù)群理論、測(cè)度與積分論、泛函分析、隨機(jī)過(guò)程論等等.幾乎所有應(yīng)用數(shù)學(xué)和與計(jì)算機(jī)有關(guān)的數(shù)學(xué)部門(mén)都是20世紀(jì)的產(chǎn)物,即使是經(jīng)典的數(shù)學(xué)部門(mén),面貌也已完全改觀.比如說(shuō),19世紀(jì)以前的代數(shù)學(xué)主要研究代數(shù)方程及代數(shù)方程組的求解問(wèn)題,19世紀(jì)出現(xiàn)了研究代數(shù)方程代換群的伽羅瓦理論、線性代數(shù)學(xué)、不變式理論,而現(xiàn)代的代數(shù)學(xué)已經(jīng)是群論、環(huán)論、域論及同調(diào)代數(shù)學(xué)等分支,而那些經(jīng)典內(nèi)容總共也已經(jīng)占不到百分之幾了.2.?dāng)?shù)學(xué)不再像過(guò)去那樣只是解決特殊問(wèn)題、尋求特殊算法的學(xué)科,而是在結(jié)構(gòu)的概念下有統(tǒng)一的對(duì)象、統(tǒng)一的方法、有自身獨(dú)立的問(wèn)題的獨(dú)立學(xué)科,它不僅研究數(shù)與形,而主要是研究各種結(jié)構(gòu),其中特別是代數(shù)結(jié)構(gòu)、拓?fù)浣Y(jié)構(gòu)、序結(jié)構(gòu),以及這些結(jié)構(gòu)互相混合和雜交產(chǎn)生的各種多重結(jié)構(gòu),從而給20世紀(jì)數(shù)學(xué)帶來(lái)無(wú)比豐富而深刻的內(nèi)容.結(jié)構(gòu)觀念進(jìn)一步發(fā)展或范疇及函子的概念,對(duì)統(tǒng)一數(shù)學(xué)的思想起著很大的作用,思想的統(tǒng)一及方法的深化,促進(jìn)許多經(jīng)典問(wèn)題的解決.3.?dāng)?shù)學(xué)的內(nèi)容越來(lái)越復(fù)雜、越抽象.非但沒(méi)有使得它脫離實(shí)際,而且以數(shù)學(xué)本身發(fā)展出來(lái)的許多觀念給物理學(xué)、化學(xué)、生物科學(xué)等提供了許多有力的工具,比如黎曼幾何學(xué)及張量分析對(duì)于廣義相對(duì)論,泛函分析對(duì)于量子力學(xué)及量子場(chǎng)論,乃至近年纖維叢理論、微分幾何學(xué)及代數(shù)幾何學(xué)對(duì)于規(guī)范場(chǎng)理論、群表示論對(duì)于原子結(jié)構(gòu)、核結(jié)構(gòu)、基本粒子分類(lèi)都好像是定做的工具,不只一次地引起物理學(xué)家的驚異.甚至像1917年發(fā)現(xiàn)的拉東變換在四、五十年后都對(duì)醫(yī)學(xué)上檢查腫瘤不可缺的X射線層析儀提供理論基礎(chǔ).第二次世界大戰(zhàn)前后,電子計(jì)算機(jī)的問(wèn)世以及許多門(mén)應(yīng)用數(shù)學(xué)的發(fā)展更是為數(shù)學(xué)的應(yīng)用開(kāi)辟了無(wú)比廣闊的前景.反過(guò)來(lái),實(shí)際問(wèn)題及應(yīng)用數(shù)學(xué)又為純粹數(shù)學(xué)提出來(lái)許多新概念、新問(wèn)題,甚至于推動(dòng)許多經(jīng)典難題的解決.比如用規(guī)范場(chǎng)理論推動(dòng)四維拓?fù)鋵W(xué)取得重大突破.4.隨著電子計(jì)算機(jī)的發(fā)明,無(wú)論是純粹數(shù)學(xué)還是應(yīng)用數(shù)學(xué)都受到電子計(jì)算機(jī)的強(qiáng)烈影響,數(shù)值分析已形成一門(mén)獨(dú)立的數(shù)學(xué)分支,現(xiàn)在的數(shù)學(xué)計(jì)算方法如果不能上機(jī)器那就要大為減色,許多方法(如單純形法、蒙特卡羅法、有限元法、卡爾曼濾波等等)的優(yōu)越性就在于它們能夠與計(jì)算機(jī)很好地配合.這樣許多應(yīng)用數(shù)學(xué)問(wèn)題可以進(jìn)行計(jì)算機(jī)試驗(yàn),而逐步得到解決.不僅如此,許多純粹數(shù)學(xué)問(wèn)題也在計(jì)算機(jī)幫助之下得到證明,其中最突出的就是1976年阿佩爾及哈肯籍助計(jì)算機(jī)證明四色猜想.機(jī)械化證明可望減輕數(shù)學(xué)家某些重復(fù)、繁瑣的勞動(dòng),而集中于更重要的數(shù)學(xué)問(wèn)題的解決.20世紀(jì)的數(shù)學(xué)可以第二次世界大戰(zhàn)為界劃為前后兩期,前期約1870年到1940年,可以說(shuō)是現(xiàn)代數(shù)學(xué)的萌芽時(shí)期.?dāng)?shù)學(xué)由以算為主過(guò)渡到以研究結(jié)構(gòu)為主,把數(shù)學(xué)統(tǒng)一在集合論的基礎(chǔ)上.其標(biāo)志是數(shù)理邏輯、抽象代數(shù)學(xué)、測(cè)度與積分論、拓?fù)鋵W(xué)、泛函分析等五大學(xué)科的誕生,到30年代布爾巴基學(xué)派用數(shù)學(xué)結(jié)構(gòu)的概念統(tǒng)一數(shù)學(xué),陸續(xù)出版多卷本《數(shù)學(xué)原理》(ElmentsdeMath-matique,1939),成為戰(zhàn)后數(shù)學(xué)的經(jīng)典.1940年以后,是現(xiàn)代數(shù)學(xué)的繁榮時(shí)期,純粹數(shù)學(xué)以拓?fù)鋵W(xué)為中心得到迅猛發(fā)展,同時(shí),隨著計(jì)算機(jī)的出現(xiàn),應(yīng)用數(shù)學(xué)及計(jì)算數(shù)學(xué)也取得空前的進(jìn)步,對(duì)于科學(xué)及社會(huì)都起著越來(lái)越重大的作用.
解放軍文職招聘考試應(yīng)用數(shù)學(xué)-解放軍文職人員招聘-軍隊(duì)文職考試-紅師教育
發(fā)布時(shí)間:2017-11-2220:26:44應(yīng)用數(shù)學(xué)數(shù)學(xué)并不是一門(mén)自然科學(xué),它不討論外在世界的實(shí)體與現(xiàn)象以及它們之間的相互關(guān)系.但是,長(zhǎng)期以來(lái),數(shù)學(xué)的成果卻是與天文學(xué)、地理學(xué)、物理學(xué)(包括力學(xué))乃至其他自然科學(xué)的研究聯(lián)系在一起的.在這種背景之下,純粹數(shù)學(xué)家、應(yīng)用數(shù)學(xué)家、計(jì)算數(shù)學(xué)家往往三者集于一身,牛頓、歐拉、拉格朗日、拉普拉斯、高斯就是這方面的突出代表.19世紀(jì)中期以后,隨著專(zhuān)業(yè)化的發(fā)展,除了最優(yōu)秀的大數(shù)學(xué)家之外,只能在一個(gè)狹窄專(zhuān)業(yè)里取得一定成就,而且純粹數(shù)學(xué)家以搞純正的數(shù)學(xué)問(wèn)題(如數(shù)論問(wèn)題)為榮,對(duì)于應(yīng)用數(shù)學(xué)不屑一顧,甚至一些應(yīng)用數(shù)學(xué)家也以進(jìn)行數(shù)值計(jì)算為恥,認(rèn)為這些是下手活.這種分化對(duì)于整個(gè)數(shù)學(xué)乃至自然科學(xué)的發(fā)展是不利的.盡管如此,最優(yōu)秀的一些數(shù)學(xué)家仍然在理論數(shù)學(xué)、應(yīng)用數(shù)學(xué)甚至數(shù)值方法諸方面均作出一定的貢獻(xiàn).其中有法國(guó)的傅里葉、柯西、劉維爾厄米特一直到龐加萊,德國(guó)的雅可比、狄里克雷、黎曼一直到克萊因、希爾伯特及閔科夫斯基.19世紀(jì)末開(kāi)始編纂的德國(guó)《數(shù)學(xué)科學(xué)百科全書(shū)》公平地把數(shù)學(xué)一分為二:前半分為數(shù)論和代數(shù)、分析及幾何學(xué)三部分,后半分為力學(xué)、物理學(xué)、天文學(xué)及測(cè)地學(xué)三部分.在克萊因的倡導(dǎo)下,應(yīng)用數(shù)學(xué)受到一定的重視并且取得巨大的成績(jī).但同時(shí)國(guó)際上也越來(lái)越興起越無(wú)用越純粹的數(shù)學(xué)越好的說(shuō)法:德國(guó)的數(shù)論專(zhuān)家朗道等譏諷普蘭托(L.Prandtl,18751953)等搞的應(yīng)用數(shù)學(xué)為潤(rùn)滑油技師,英國(guó)的哈代說(shuō)自己搞的數(shù)學(xué)都是沒(méi)用的,而法國(guó)的兩代數(shù)學(xué)家,20世紀(jì)初的函數(shù)論學(xué)派以及30年代興起的布爾巴基學(xué)派都是以抽象為榮.直到第二次世界大戰(zhàn)前后,純粹數(shù)學(xué)、應(yīng)用數(shù)學(xué)及計(jì)算數(shù)學(xué)和它們之間的關(guān)系有了巨大的變化,這表現(xiàn)在:1.應(yīng)用數(shù)學(xué)的領(lǐng)域大大擴(kuò)展了,它不僅把以微分方程為主的數(shù)學(xué)物理學(xué)擴(kuò)展到化學(xué)、生物學(xué)、地學(xué)乃至社會(huì)科學(xué),而且所用的數(shù)學(xué)工具也擴(kuò)張到群論、微分幾何學(xué)、拓?fù)鋵W(xué).2.隨著電子計(jì)算機(jī)的出現(xiàn),數(shù)值方法必需要適應(yīng)機(jī)器的需要,從而使應(yīng)用數(shù)學(xué)取得越來(lái)越多的成果.3.反過(guò)來(lái),應(yīng)用數(shù)學(xué)的發(fā)展及計(jì)算機(jī)上的數(shù)值試驗(yàn)也推動(dòng)了一系列純粹數(shù)學(xué)問(wèn)題的提出及解決,如唐納遜由規(guī)范場(chǎng)理論出發(fā)導(dǎo)致四維拓?fù)鋵W(xué)的突破,計(jì)算機(jī)試驗(yàn)導(dǎo)致KdV方程的解.一、數(shù)學(xué)物理學(xué)第二次世界大戰(zhàn)之前,物理學(xué)的各項(xiàng)重大成就都與數(shù)學(xué)及數(shù)學(xué)家的貢獻(xiàn)分不開(kāi).在愛(ài)因斯坦于1905年發(fā)表狹義相對(duì)論之前,對(duì)該理論貢獻(xiàn)最大的有荷蘭物理學(xué)家洛倫茲(H.A.Lorentz,18531928)與法國(guó)大數(shù)學(xué)家龐加萊,而且有人認(rèn)為龐加萊有不亞于愛(ài)因斯坦的功績(jī).為了對(duì)它給出數(shù)學(xué)表述,1907年閔科夫斯基第一個(gè)提出四維時(shí)空(即閔科夫斯基空間)概念,他的思想后來(lái)還引導(dǎo)愛(ài)因斯坦走向廣義相對(duì)論.1912年愛(ài)因斯坦在他的同學(xué)格羅斯曼(M.Grossmann,18781936)的幫助下,發(fā)現(xiàn)數(shù)學(xué)家早已發(fā)展起來(lái)的黎曼幾何學(xué)及張量分析是廣義相對(duì)論的適用工具.他于1915年11月25日最后得出對(duì)坐標(biāo)變換協(xié)變的引力方程,稍早一些,希爾伯特也獨(dú)立地得出該方程.1918年,外爾在他的《時(shí)間、空間和物質(zhì)》(Raum,Zeit,Materie)中首次進(jìn)行統(tǒng)一引力場(chǎng)及電磁場(chǎng)的嘗試,雖然沒(méi)有成功,但他提出的規(guī)范不變性的概念在二次大戰(zhàn)后直接導(dǎo)致規(guī)范理論的發(fā)展.同時(shí),克萊因、希爾伯特及E諾特利用不變式理論得出物理原理,特別是諾特原理,它把對(duì)稱(chēng)變換的不變性與物理量的守恒性聯(lián)系在一起.1900年,德國(guó)數(shù)學(xué)家普朗克(M.Planck,18581947)提出量子概念,到1925年發(fā)展成海森伯(W.Heisenberg,19011976)的矩,這標(biāo)志著量子力學(xué)的誕生.而1924年出版的庫(kù)朗希爾伯特《數(shù)學(xué)物理方法》(MethodenderMathematischenPhysik)I似乎早就為物理學(xué)準(zhǔn)備好數(shù)學(xué)工具.矩陣力學(xué)及波動(dòng)力學(xué)的等價(jià)性早在20多年前已在希爾伯特的掌握之中.海森伯寫(xiě)道希爾伯特對(duì)哥廷根量子力學(xué)的發(fā)展的影響最為巨大.現(xiàn)已表明,量子力學(xué)的數(shù)學(xué)方法原來(lái)是希爾伯特積分方程理論的直接應(yīng)用.希爾伯特說(shuō)無(wú)窮多個(gè)變量的理論研究,完全出于純數(shù)學(xué)的興趣,我甚至管這個(gè)理論叫譜分析,當(dāng)時(shí)也沒(méi)有預(yù)料到它后來(lái)在實(shí)際的物理學(xué)光譜理論中獲得應(yīng)用.希爾伯特同諾德海姆(Nord-heim,)及馮諾伊曼合寫(xiě)了《量子力學(xué)的公理基礎(chǔ)》.馮諾伊曼發(fā)展了希爾伯特空間及其算子理論,他推廣希爾伯特的自伴算子成為量子力學(xué)適用的厄米特算子并發(fā)展其譜理論從而給量子力學(xué)建立了完整的數(shù)學(xué)基礎(chǔ).他的《量子力學(xué)的數(shù)學(xué)基礎(chǔ)》(1932)成為這方面的經(jīng)典著作.第二次世界大戰(zhàn)后,基本粒子的分類(lèi)及規(guī)范場(chǎng)理論深刻地影響物理及數(shù)學(xué)的發(fā)展,由于李群表示論及代數(shù)幾何學(xué)的進(jìn)步,超弦理論成為當(dāng)前最廣泛的大統(tǒng)一場(chǎng)論.
解放軍文職招聘考試希臘數(shù)學(xué)-解放軍文職人員招聘-軍隊(duì)文職考試-紅師教育
發(fā)布時(shí)間:2017-11-2219:08:31希臘數(shù)學(xué)著名數(shù)學(xué)史家克萊因(M.Kline)在其名著《古今數(shù)學(xué)思想》中指出,希臘人在文明史上首屈一指,在數(shù)學(xué)史上至高無(wú)上.他們雖然也取用了周?chē)渌拿魇澜绲囊恍〇|西,但希臘人創(chuàng)造了他們自己的文明和文化,這是一切文明中最宏偉的,是對(duì)現(xiàn)代西方文化的發(fā)展影響最大的.第一節(jié)古希臘數(shù)學(xué)產(chǎn)生的背景及研究依據(jù)正當(dāng)數(shù)學(xué)面臨著積累起來(lái)的大量資料,有待于整理、創(chuàng)新,使之條理化、系統(tǒng)化時(shí),首先把這些零散的數(shù)學(xué)知識(shí)經(jīng)過(guò)歸納、提煉、開(kāi)拓、發(fā)展并著書(shū)立說(shuō)的民族是希臘人.他們開(kāi)始嘗試對(duì)命題的證明,對(duì)今日數(shù)學(xué)的奠基起到了十分重要的作用.正如M.克萊因所說(shuō):數(shù)學(xué)作為一門(mén)有組織的、獨(dú)立的和理性的學(xué)科來(lái)說(shuō),在公元前600到300年之間的古典希臘學(xué)者登場(chǎng)之前是不存在的.(《古今數(shù)學(xué)思想》)一、古希臘數(shù)學(xué)產(chǎn)生、發(fā)展的背景數(shù)學(xué)在希臘的發(fā)展,有其社會(huì)原因.古代希臘人定居在小亞細(xì)亞,即歐洲大陸上如今希臘所在地區(qū)以及意大利南部,西西里(Sicily),克里特(Crete),羅德斯(Rhodes),第羅斯(De-los)和北非等地區(qū).當(dāng)時(shí),希臘為奴隸社會(huì),早期進(jìn)行了一系列變革,使之變得比較完善,比較先進(jìn).馬克思把她比喻為發(fā)育正常的小孩.恩格斯也指出,這種奴隸制使農(nóng)業(yè)和工業(yè)之間的更大規(guī)模的分工成為可能,從而為古代文化的繁榮,即為希臘文化創(chuàng)造了條件.沒(méi)有奴隸制,就沒(méi)有希臘國(guó)家,就沒(méi)有希臘的藝術(shù)和科學(xué),.因此,社會(huì)的變革,對(duì)希臘文化的發(fā)展,起到了非常重要的作用.希臘人大約在公元前775年左右實(shí)施了文字改革,把他們用過(guò)的各種象形文字書(shū)寫(xiě)系統(tǒng)改換成腓尼基人的拼音字母.采用了拼音字母之后,希臘人變得更加通文達(dá)理,更有能力和條件來(lái)記載他們的歷史和思想,也更有利于進(jìn)行數(shù)學(xué)邏輯運(yùn)算和推演了.希臘是埃及、巴比倫的鄰國(guó).地理位置為希臘人游訪埃及、巴比倫,并與之貿(mào)易往來(lái)創(chuàng)造了方便條件.通過(guò)這些往來(lái)活動(dòng),使希臘人有機(jī)會(huì)了解、學(xué)習(xí)埃及人、巴比倫人創(chuàng)造的數(shù)學(xué).例如,被譽(yù)為希臘哲學(xué)、數(shù)學(xué)和科學(xué)的誕生地小亞細(xì)亞、愛(ài)奧尼亞(Ionia)地區(qū)的米利都(Miletus)濱臨地中海,來(lái)自希臘本土、腓尼基和埃及的船舶都駛進(jìn)它的港口,并有隊(duì)商大道與巴比倫相通.古代希臘形成了多個(gè)數(shù)學(xué)學(xué)派,他們的活動(dòng)和研究,對(duì)數(shù)學(xué)的發(fā)展和傳播是有重要作用的.古希臘數(shù)學(xué)延續(xù)了1000年左右,這在數(shù)學(xué)發(fā)展史上也是屈指可數(shù)的幾個(gè)國(guó)家之一.二、研究古希臘數(shù)學(xué)的主要依據(jù)在歷史上,希臘曾遭受過(guò)波斯人的侵略,使希臘人受到不少磨難,文化活動(dòng)中心發(fā)生轉(zhuǎn)移和改變,記載數(shù)學(xué)書(shū)籍和文獻(xiàn)也被破壞.現(xiàn)在研究希臘數(shù)學(xué),主要依據(jù)是拜占庭的希臘文的手抄本,這是在希臘原著寫(xiě)成后500年到1500年之間錄寫(xiě)成的.其原因是,希臘的原文手稿沒(méi)有保存下來(lái)(由紙草書(shū)寫(xiě)成易于毀壞,加之希臘的大圖書(shū)館毀于兵燹).希臘數(shù)學(xué)的抄錄本,可能做了若干修改.例如,我們雖無(wú)希臘人海倫(Heron)的手稿,但我們知道他對(duì)歐幾里得《幾何原本》做了若干改動(dòng).他給出了不同的證明,添補(bǔ)了一些定理的新例子和逆定理.就是希恩自己也提到,他改動(dòng)了《幾何原本》的若干部分.另外,研究希臘數(shù)學(xué)還要依靠?jī)膳u(píng)述本,其一是帕波斯(Pappus,公元3世紀(jì))撰寫(xiě)的《數(shù)學(xué)匯編》(Sgnagoge或MathematicalCollection);其二是普羅克洛斯(Proclus,410---485)撰寫(xiě)的.《評(píng)述》(Commentary).這是研究希臘數(shù)學(xué)史的兩部重要史料.要從如上資料中,把希臘數(shù)學(xué)發(fā)展的歷史整理出來(lái),是一項(xiàng)浩繁而復(fù)雜的工作,由于學(xué)者們的艱苦努力,已經(jīng)基本弄清希臘數(shù)學(xué)的基本史實(shí).但是,有些結(jié)論也有爭(zhēng)議,可望在深入研究和探索中,進(jìn)一步澄清史實(shí).